

Professor & Presidential Chair in Energy Innovation Director, CSU Energy Institute

Former Program Director & Special Government Employee DOE ARPA-E, Advanced Research Projects Agency - Energy

NG Emissions Monitoring Technology

Point sensor technologies

Optical imaging technologies

Aerial technologies

Long distance technologies

ARPA-E's MONITOR Program

Complete & Partial Solutions to Detection

Complete measurement systems: 6 projects

- Systems that include:
 - 1) Methane emission sensing
 - Leak rate characterization and data analytics
 - 3) Provisions for data quality control
 - 4) Digital communication
 - Enhanced functionality

Palo Alto, CA

Andover, MA

Redwood City, CA

Bozeman, MT

Yorktown Heights, NY

Houston, TX

Partial measurement systems: 5 projects

- Nascent technologies that may be too early in the development process for incorporation into a complete system
- Could significantly contribute to meeting system-level objectives
- Primarily envisioned as advances in detector technology or data analytics

Jessup, MD

Lincoln, NE

University of Colorado Boulder

Boulder, CO

Durham, NC

The Portfolio: Four Approaches

Portfolio:

Five Point Sensing Technologies

Miniature, High Accuracy Tunable Laser Spectrometer for CH₄/C₂H₆ Leak Detection

PROJECT HIGHLIGHTS

- Enables ppb/s sensitivity via simple and robust direct absorption spectroscopy
- Uniquely discriminates biogenic vs. thermogenic emissions
- Analyzer core is 2.9l volume, 1.5kg w/pump @12W total power consumption
- Rackmounted and handheld early units are available now
- Compatible with other industry applications that require high accuracy, real-time analyses (e.g. mobile applications)

AWARD AMOUNT: \$2.4 million

PROJECT PARTNERS: Los Alamos National Laboratory, Rice University

Miniature, High Accuracy Tunable Laser Spectrometer for CH₄/C₂H₆ Leak Detection

Thermogenic Methane:

 Vehicle samples taken while driving Red indicates correlated CH₄ + C₂H₆

Biogenic Methane:

- Office Buildings located on former landfill
- Green= methane only; no ethane

Aeris MIRA Pico Mobile LDS: Ethane/Methane

2 dozen+ NG leaks detected with 99%+ confidence

Aeris ethane/methane vs. simulated LGR/Picarro: Only 1 correlation detected (vs. 28 w/Aeris Pico Mobile LDS)

Laser Spectroscopic Point Sensor for Methane Leak Detection

PROJECT HIGHLIGHTS

- Performance of state of the art cavitybased point sensors at reduced cost
- High sensitivity, selectivity, and stability measurements with low maintenance
- Closed path instrument is weather-proof, high-performance, and low power consumption
- Suitable for continuous or intermittent stationary and mobile applications
- Advanced spectral models and high instrument stability allow unattended operation
- Advanced manufacturing and novel design/alignment enable cost reductions

AWARD AMOUNT: \$2.85 million

PROJECT PARTNERS: Colorado State

University, Gener8

On-Chip Optical Sensors and Distributed Mesh Networks for Methane Leak Detection

PROJECT HIGHLIGHTS

- Developing novel, low cost, on-chip optical sensors with high methane selectivity
- Distributed and modular system with self-organizing network of low-power motes
- State of the art silicon photonics technology for on-chip TDLAS
- Allows for selectivity to molecule of choice
- Orders of magnitude lower cost (\$250/sensor target)
- Low power consumption (<1 Watt)</p>
- Cloud-based analytics for source detection and localization

AWARD AMOUNT: \$4.5 million

PROJECT PARTNERS: Princeton
University, Harvard University,
Southwestern Energy

Silicon photonic waveguide sensor (30cm)

On-Chip Optical Sensors and Distributed Mesh Networks for Methane Leak Detection

base station

wind sensors

methane sensors

IBM AIMS methane sensing system:

solar powered low power mesh radio connectivity ppm sensitivity

Printed Carbon Nanotube Sensors for Methane Leak Detection

PROJECT HIGHLIGHTS

- Developing a mesh network of ultra-lowcost printed sensor arrays that can detect multiple gases
- Uses scalable low-cost, additive printing methods to print chemical sensor arrays based on modified carbon nanotubes
- Sensor elements with different responses to methane, ethane, propane and other wellhead gases
- ► Total system costs under \$350 per site per year
- Wellpad, pipelines and refineries
- Sub-ppm sensitivity with leak localization within 1 m

AWARD AMOUNT: \$3.4 million

PROJECT PARTNERS: NASA Ames

Research Center, BP, Xerox Corporation

Coded Aperture Miniature Mass Spectrometer for Methane Sensing

PROJECT HIGHLIGHTS

- Miniaturizing a mass spectrometer utilizing microfabrication and aperture coding
- High selectivity measurements at short detection times for methane as well as VOC's (such as benzene, C₂-C₇)
- Capable of thermogenic vs. biogenic differentiation
- Examining fence line monitoring at refineries and gas processing facilities

AWARD AMOUNT: \$2.9 million

PROJECT PARTNERS: RTI International

Microfabricated CNT field emission ion source

Cycloidal mass analyzer

Focal plane array detector

" Image courtery Benton Group at University of Aritona

Portfolio:

Two Long Distance Technologies

Frequency Comb-based Methane Sensing Spectroscopy

Monitor 100s of sites from a central location. Clients are charged an annual fee for monitoring.

 Large cost reduction over proof-of-concept

PROJECT HIGHLIGHTS

- High sensitivity (ppb-m) Regional laser frequency-comb absorption measurements over kilometer paths with inversion techniques
- Ability to monitor 100's of sites from a central location with thermogenicbiogenic differentiation
- Simplifying design to reduce the cost of phase locked dual comb spectroscopy
- ► Multispecies sensing includes CH₄, ¹³CH₄, C₂H₆, H₂O, CO₂, and propane
- Coupled to large eddy dispersion modeling to provide localization

AWARD AMOUNT: \$2.1 million

PROJECT PARTNERS: NIST, NOAA

Frequency Comb-based Methane Sensing

	v 0 0	-

Distributed Gas Sensor Using Hollow Core Fiber

PROJECT HIGHLIGHTS

- Modified tube + hollow core fiber sensing system in a design that can span over 100km and offer continuous pipeline monitoring
- Broadly applicable throughout the oil and gas industry, particularly for large-scale infrastructure (such as gathering lines and storage facilities)
- Near IR absorption enables remote
 TDLAS through standard telecom while
 leverageing conventional tube sensing

AWARD AMOUNT: \$1.4 million

PROJECT PARTNERS: Virginia Tech

Portfolio:

Two Aerial Technologies

UAV-based Laser Spectroscopy for Methane Leak Measurement

M Wind

See Detail 'A'

Vector

PROJECT HIGHLIGHTS

- Continuous leak monitoring with leak quantification and real-time alarm notification
- Two modes of operation: continuous perimeter monitoring and search mode to pinpoint leak location
- Speciation of methane and ethane differentiates thermogenic vs. biogenic emission
- Improved production processes reduce costs of mid-IR Interband Cascade Laser (ICL) sources

AWARD AMOUNT: \$2.9 million

PROJECT PARTNERS: Heath Consultants, Thorlabs, Princeton University, University of Houston, Cascodium

UAV-based Laser Spectroscopy for Methane Leak Measurement

UAV sensor

PROJECT HIGHLIGHTS

- Simultaneous, rapid, and precise 3D topography and methane gas sensing on fixed or mobile platform
- Produces detailed situational awareness reports derived from overlaid methane concentration, 3D topography, and RGB picture data
- UAV and manned aircraft platforms targeting well pads and pipelines
- Capable of covering a broad range: a frequency-swept laser beam is transmitted to a topographical target 1-300 m from the sensor
- Sensitivities from 5ppm-m and measurements from up to altitudes of 1000 ft

AWARD AMOUNT: \$1.5 million

Sensor status

- Gimbal sensor for fixed position monitoring is operational
- Telescoping mast provides downward-looking perspective and rapid deployment
- Real-time data streaming and processing for immediate results

> Results summary

- Detected and quantified 7 leaks in 2.5 hours
- Localized 6 of 7 to within 1 m
- Estimated 6 of 7 leak rates to within 50%

Leak#	Leak Location	Time	Detected?	Location Error (m)	Actual Rate (cuft/hr)*	Measured Rate (cuft/hr)	Rate Error (%)
1	Separator PRV vent	9:30	yes	1.6 m	7	10	43%
2	Separator burner controller	9:49	yes	1 m	12	21	75%
3	Storage tank vent	10:06	yes	0 m	11	10	-9%
4	Well head pneumatic valve	10:20	yes	0 m	10.5	13	24%
5	Well head pressure guage	10:40	yes	0 m	4	6	50%
6	Separator burner gas line	11:10	yes	0.4 m	9	8	-11%
7	Separator pneumatic valve	11:52	yes	0 m	11	8	-27%

^{*} flow meter uncertainty: 1.5 cuft/hr

Portfolio:

One Imaging Camera Technology

Portable Imaging Spectrometer for Methane Leak Detection

6400

5600

4800

4000

3200

2400

1600

800

PROJECT HIGHLIGHTS

- Miniaturization of Rebellion's Gas Cloud Imager (GCI), a long-wave infrared imaging spectrometer: 7-14µm
- Camera will be lightweight and portable - the size of a Red Bull can - and capable of being incorporated into personal protective equipment
- Data processing uses cloud-based computing architecture that streams results to mobile device

AWARD AMOUNT: \$4.3 million

Portable Imaging Spectrometer for Methane Leak Detection

Main panel with video stream and status bar

Portfolio:

One Enabling Technology

Tunable Mid-infrared Laser for Methane Sensing

PROJECT HIGHLIGHTS

- ► Innovative, low-cost mid-IR laser with VCSEL architecture
- Integrated micro-electro-mechanical system (MEMS) mirror enables a wide tuning range
- Approximately 40x reduction in laser cost, applicable across a wide array of sensors and applications

AWARD AMOUNT: \$1.9 million

PROJECT PARTNERS: Thorlabs Quantum Electronics, Praevium Research, Rice University

METEC – Methane Emissions Test and Evaluation Center

Bryan Willson Bryan.Willson@ColoState.edu 970-227-5164

